
Optimization of Financial Models
Using Evolutionary Algorithms and

GPU Computing

Michal Hojčka, Riccardo Gismondi

R7 CORP k.s.

30.5.2019, Modern Tools for Financial Analysis and Modeling Conference, Bratislava

OVERVIEW

1

• GPU computing

• Evolutionary Algorithms

• Application for Financial Models

GPU COMPUTING

2

GPU COMPUTING IN MATLAB

3

• Use Parallel Computing Toolbox (possibly also GPU Coder)

 No CUDA programming needed

 Lot of existing predefined functions

• Compile native code as mex file in order to be used in MATLAB

 More control over the code

 We understand what is happening inside

 Possible use in other programming languages

We choose this approach

GPU VS CPU - ARCHITECTURE

4

• CPU: specialized for flow control and fast
serial computation (optimized for latency)

• GPU: specialized for compute-intensive,
highly parallel computation needed for
graphic rendering (optimized for
throughput)

• ALU: arithmetic logic unit

• Cache: fast temporary memory

• DRAM: main memory

• Control: flow control unit

GPU VS CPU - FLOPS

5

• FLOP: floating-point
operation per second,
measure of raw
computational power

GPU VS CPU – MEMORY BANDWIDTH

6

• Memory Bandwidth:
amount of data that can
be theoretically
processed per second

CUDA

7

• Stands for Compute Unified Device Architecture

• Introduced by NVIDIA in 2007

• Extension to the C language that allows to program GPU without need
to learn complex programming concepts or to use graphic primitive
types

• CUDA Toolkit: can be downloaded from NVIDIA webpage

PROGRAMMING MODEL

8

• SIMT Architecture – single-instruction,
multiple-thread

• We write program (kernel) for one
thread -> it will be executed on many
threads

• Block of Threads – max 1024

• Grid of Blocks

GPU HARDWARE - MEMORY

9

• Per-thread local memory: very fast, very
small

• Per-block shared memory: can be used
within each thread-block, little bit slower

• Global memory: can be used from
anywhere on GPU, much slower

• Copying from CPU to GPU Global memory
is very time-consuming and ineffective

STREAMING MULTIPROCESSORS

10

• Manage the execution of Threads, memory access and the distribution
of arithmetic operations on the CUDA Cores

• Each Thread Block runs on a single SM, each SM can manage multiple
Thread Blocks, depending on the available memory

• There can be up to ~20 SMs on the graphic card, depending on the
model

CUDA CORES

11

• Unit for performing arithmetic operations

• Their architecture depends on the Compute Capability of the GPU

• Typical NVIDIA GPU has 100s – 1000s CUDA Cores

SCALABILITY

12

• Compatibility across
multiple devices

• Same code can run from
smartphones with 2 SMs to
newest GPUs with 10s of
SMs

GPU CARDS

13

• Scientific GPUs:

– Pros: better computing capability, optimized to calculate with double
precision

– Cons: much more expensive, cannot be used for monitor

• Gaming GPUs:

– Pros: cheaper, can be used also for monitor

– Cons: expensive double precision computing

• Example: GeForce GTX 1050 card (quite basic gaming card): CUDA
Capability version 6.1, 5 SMs, 128 CUDA Cores each -> 640 CUDA
cores

SINGLE VS. DOUBLE PRECISION

14

• Gaming GPUs are optimized for single-precision calculations

• From the performance point of view is important to use double
precision only where necessary

• Example: GeForce GTX 1050 card have 32-times smaller double
precision computing capability, which means ~10 times slower
performance

CUDA EXAMPLE – MATRIX MULTIPLICATION

15

• AB = C (each matrix has shape N x N)

• Serial code: N^3 arithmetic operations (N multiplications for each of
N^2 elements)

• Parallel code: N arithmetic operations done by each of N^2 threads

• Actual speedup will depend on the amount of possible parallel threads
and the effectivity of memory access

CUDA CODE COMPILATION FOR MATLAB

16

• C/C++/CUDA code can be compiled to be used in MATLAB as mex files
(.mexw64)

• Mex, Nvmex, CUDA mex etc. did not work for us

• Exporting DLL from Visual Studio with the help of mex libraries did work
for us

EVOLUTIONARY ALGORITHMS

17

OPTIMIZATION PROBLEM

18

• General optimization problem have the following form:

OPTIMIZATION TYPES

19

• Deterministic search methods:
 Gradient methods: e.g. Quasi-Newton methods (DFP, BFGS)

 Gradient-free methods: e.g. Direct methods, Surrogate methods

 Require some assumptions about the smoothness or continuity of the objective
function

 Extremely dependant on the starting point in case of multimodal functions

• Stochastic search methods:

 Random search

 Evolutionary algorithms

EVOLUTIONARY ALGORITHMS

20

• Motivated by the natural processes, lot of different types, such as:

 Genetic Algorithm (GA)

 Evolutionary Programming

 Evolution Strategies (ES)

 Genetic Programming

 Simulated Annealing

 Particle Swarm Optimization (PSO)

 Ant Colony Optimization

EVOLUTIONARY ALGORITHMS

21

• No assumptions regarding the objective function, ‘black box’
optimization

• General structure of the algorithm:

 Start with random initial population

 Evaluate the fitness of the individuals based on the objective function

 Create new generation based on the population fitness

 Repeat last two steps for predefined number of iterations or until our
requirements are met

GENETIC ALGORITHM

22

• Method that mimics the process of natural evolution

• Oldest class of Evolutionary Algorithms (Holland - 1975)

• Originally, chromosomes were binary vectors

• Later, real-coded version appears, which works also with continuous real
vectors

GENETIC ALGORITHM

23

• Each iteration we:

 Evaluate fitness of each individual based on the objective function

 Select parents for the new generation based on this fitness

 Create children using the crossover operation on the parents

 With small probability mutate each element of the children

 Replace the old population with the new one (we can keep some number of elite
individuals)

GENETIC ALGORITHM

24From http://blog.otoro.net/2017/10/29/visual-evolution-strategies/ by David Ha

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/

CMA - ES

25

• Stands for Covariance Matrix Adaptation Evolution Strategies

• Each iteration we:
 Generate random points based on the covariance matrix and the starting point

 From these points choose the ones with ‘good’ fitness

 Choose next starting point as weighted average of ‘good’ points

 Update covariance matrix based on ‘good’ points

CMA - ES

26From http://blog.otoro.net/2017/10/29/visual-evolution-strategies/ by David Ha

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/

PARTICLE SWARM OPTIMIZATION

27

• Imitation of human/animal social behaviour

• Swarm of particles, each particle is defined by its position and
velocity

• Each iteration, velocity is adjusted to take into account:
 Actual velocity

 Each particle’s best position in the past

 Best actual position of any ‘neighbour’ particle

 Best overall achieved position of the whole swarm

• New position is obtained using this velocity

PARTICLE SWARM OPTIMIZATION

28From https://commons.wikimedia.org/wiki/File:ParticleSwarmArrowsAnimation.gif

https://commons.wikimedia.org/wiki/File:ParticleSwarmArrowsAnimation.gif

PARALLELIZATION OF EA

29

• Evaluation of objective function for each individual in the population is
naturally parallel operation

• Same holds for selection, crossover and mutation in Genetic Algorithm

• It is also possible to take advantage in sorting, matrix multiplication and
other procedures

• It is possible to use much larger populations/more iterations during the
same time

GPU computing can be utilized very efficiently

HYBRID OPTIMIZATION

30

• Evolutionary Algorithms: very robust, can get out of a local minima

• Gradient-based algorithms: very good at finding local minima

 Best practice: find very good & robust starting point using Evolutionary
Algorithms and then improve it using deterministic gradient-based
algorithm

APPLICATION TO FINANCIAL MODELS

31

RASTRIGIN FUNCTION MINIMIZATION

32

-5

0

5 -5

0

5

0

10

20

30

40

50

60

70

80

ACKLEY FUNCTION MINIMIZATION

33

-10

-5

0

5

10 -10

-5

0

5

10
0

5

10

15

20

VASICEK MODEL

34

• Short rate: 𝑟𝑡 = 𝜅 𝜃 − 𝑟𝑡 𝑑𝑡 + 𝜎𝑑𝑊𝑡

• In order to calibrate we try to fit calculated bond prices to market bond
prices (or calculated rates to market rates)

• Vasicek bond price:

 𝑃 𝑡, 𝑇 = 𝐴 𝑡, 𝑇 ∗ exp(−𝑟 𝑡 ∗ 𝐵(𝑡, 𝑇))

 𝐵 𝑡, 𝑇 =
1−exp(−𝑘(𝑇−𝑡))

𝑘

 𝐴 𝑡, 𝑇 = exp 𝜃 −
𝜎2

2𝑘2
𝐵 𝑡, 𝑇 − 𝑇 + 𝑡 −

𝜎2

4𝑘
𝐵2(𝑡, 𝑇)

VASICEK CALIBRATION RESULTS – 31/08/18

35

HESTON MODEL

36

• Stock price: 𝑑𝑆𝑡 = 𝜇 − 𝑞 𝑆𝑡𝑑𝑡 + 𝑣𝑡𝑆𝑡𝑑𝑊𝑡
1

• Volatility: 𝑑𝑣𝑡 = 𝜅 𝜃 − 𝑣𝑡 𝑑𝑡 + 𝜉 𝑣𝑡𝑑𝑊𝑡
2

• In order to calibrate we try to fit implied volatilities from calculated
option prices to the market volatility surface

• Call option price under Heston model:
 𝐶 = 𝑆0𝑒

−𝑞𝜏Π1 − 𝐾𝑒−𝑟𝜏Π2

 Π1 =
1

2
+

1

𝜋
 0
∞
ℜ

𝑒−𝑖𝑢 log 𝐾𝜙 𝑢−𝑖;𝜏

𝑖𝑢𝜙 −𝑖;𝜏
𝑑𝑢

 Π2 =
1

2
+

1

𝜋
 0
∞
ℜ

𝑒−𝑖𝑢 log 𝐾𝜙 𝑢;𝜏

𝑖𝑢
𝑑𝑢

HESTON MODEL CALIBRATION RESULTS

37

REFERENCES

38

• CUDA C Best Practices Guide v10.0, 2018:
(docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf)

• CUDA C Programming Guide v10.0, 2018:
(docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf)

• Cook, S: CUDA Programming, 2013

• Marthaler, D.E: An overview of Mathematical Methods for Numerical
Optimization, 2013

• Simon, D.: Evolutionary Optimization Algorithms, 2013

• Vasicek, O.: An Equilibrium Characterisation of the Term Structure, 1977

• Lewis, A.: Option Valuation Under Stochastic Volatility, 2000

