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OVERVIEW
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• GPU computing

• Evolutionary Algorithms

• Application for Financial Models



GPU COMPUTING
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GPU COMPUTING IN MATLAB
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• Use Parallel Computing Toolbox (possibly also GPU Coder)

 No CUDA programming needed

 Lot of existing predefined functions

• Compile native code as mex file in order to be used in MATLAB

 More control over the code

 We understand what is happening inside

 Possible use in other programming languages

We choose this approach



GPU VS CPU - ARCHITECTURE
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• CPU: specialized for flow control and fast 
serial computation (optimized for latency)

• GPU: specialized for compute-intensive, 
highly parallel computation needed for 
graphic rendering (optimized for 
throughput)

• ALU: arithmetic logic unit

• Cache: fast temporary memory

• DRAM: main memory

• Control: flow control unit



GPU VS CPU - FLOPS
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• FLOP: floating-point 
operation per second, 
measure of raw 
computational power



GPU VS CPU – MEMORY BANDWIDTH
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• Memory Bandwidth: 
amount of data that can 
be theoretically 
processed per second 



CUDA
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• Stands for Compute Unified Device Architecture

• Introduced by NVIDIA in 2007

• Extension to the C language that allows to program GPU without need 
to learn complex programming concepts or to use graphic primitive 
types

• CUDA Toolkit: can be downloaded from NVIDIA webpage



PROGRAMMING MODEL
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• SIMT Architecture – single-instruction, 
multiple-thread

• We write program (kernel) for one 
thread -> it will be executed on many 
threads

• Block of Threads – max 1024

• Grid of Blocks



GPU HARDWARE - MEMORY
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• Per-thread local memory: very fast, very 
small

• Per-block shared memory: can be used 
within each thread-block, little bit slower 

• Global memory: can be used from 
anywhere on GPU, much slower

• Copying from CPU to GPU Global memory 
is very time-consuming and ineffective



STREAMING MULTIPROCESSORS
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• Manage the execution of Threads, memory access and the distribution 
of arithmetic operations on the CUDA Cores

• Each Thread Block runs on a single SM, each SM can manage multiple 
Thread Blocks, depending on the available memory

• There can be up to ~20 SMs on the graphic card, depending on the 
model



CUDA CORES
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• Unit for performing arithmetic operations

• Their architecture depends on the Compute Capability of the GPU

• Typical NVIDIA GPU has 100s – 1000s CUDA Cores 



SCALABILITY
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• Compatibility across 
multiple devices

• Same code can run from 
smartphones with 2 SMs to 
newest GPUs with 10s of 
SMs



GPU CARDS
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• Scientific GPUs: 

– Pros: better computing capability, optimized to calculate with double 
precision

– Cons: much more expensive, cannot be used for monitor

• Gaming GPUs: 

– Pros: cheaper, can be used also for monitor

– Cons: expensive double precision computing

• Example: GeForce GTX 1050 card (quite basic gaming card): CUDA 
Capability version 6.1, 5 SMs, 128 CUDA Cores each -> 640 CUDA 
cores



SINGLE VS. DOUBLE PRECISION
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• Gaming GPUs are optimized for single-precision calculations

• From the performance point of view is important to use double 
precision only where necessary

• Example: GeForce GTX 1050 card have 32-times smaller double 
precision computing capability, which means ~10 times slower 
performance



CUDA EXAMPLE – MATRIX MULTIPLICATION
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• AB = C (each matrix has shape N x N)

• Serial code: N^3 arithmetic operations (N multiplications for each of 
N^2 elements)

• Parallel code: N arithmetic operations done by each of N^2 threads

• Actual speedup will depend on the amount of possible parallel threads 
and the effectivity of memory access



CUDA CODE COMPILATION FOR MATLAB
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• C/C++/CUDA code can be compiled to be used in MATLAB as mex files 
(.mexw64)

• Mex, Nvmex, CUDA mex etc. did not work for us

• Exporting DLL from Visual Studio with the help of mex libraries did work 
for us 



EVOLUTIONARY ALGORITHMS
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OPTIMIZATION PROBLEM
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• General optimization problem have the following form:



OPTIMIZATION TYPES

19

• Deterministic search methods:
 Gradient methods: e.g. Quasi-Newton methods (DFP, BFGS)

 Gradient-free methods: e.g. Direct methods, Surrogate methods

 Require some assumptions about the smoothness or continuity of the objective 
function

 Extremely dependant on the starting point in case of multimodal functions

• Stochastic search methods:

 Random search

 Evolutionary algorithms



EVOLUTIONARY ALGORITHMS
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• Motivated by the natural processes, lot of different types, such as:

 Genetic Algorithm (GA)

 Evolutionary Programming

 Evolution Strategies (ES)

 Genetic Programming

 Simulated Annealing

 Particle Swarm Optimization (PSO)

 Ant Colony Optimization



EVOLUTIONARY ALGORITHMS
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• No assumptions regarding the objective function, ‘black box’ 
optimization

• General structure of the algorithm:

 Start with random initial population

 Evaluate the fitness of the individuals based on the objective function

 Create new generation based on the population fitness

 Repeat last two steps for predefined number of iterations or until our 
requirements are met



GENETIC ALGORITHM
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• Method that mimics the process of natural evolution

• Oldest class of Evolutionary Algorithms (Holland - 1975)

• Originally, chromosomes were binary vectors

• Later, real-coded version appears, which works also with continuous real 
vectors



GENETIC ALGORITHM
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• Each iteration we:

 Evaluate fitness of each individual based on the objective function

 Select parents for the new generation based on this fitness

 Create children using the crossover operation on the parents

 With small probability mutate each element of the children

 Replace the old population with the new one (we can keep some number of elite 
individuals)



GENETIC ALGORITHM

24From http://blog.otoro.net/2017/10/29/visual-evolution-strategies/ by David Ha

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/


CMA - ES
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• Stands for Covariance Matrix Adaptation Evolution Strategies

• Each iteration we:
 Generate random points based on the covariance matrix and the starting point

 From these points choose the ones with ‘good’ fitness

 Choose next starting point as weighted average of ‘good’ points

 Update covariance matrix based on ‘good’ points



CMA - ES

26From http://blog.otoro.net/2017/10/29/visual-evolution-strategies/ by David Ha

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/


PARTICLE SWARM OPTIMIZATION
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• Imitation of human/animal social behaviour

• Swarm of particles, each particle is defined by its position and 
velocity

• Each iteration, velocity is adjusted to take into account:
 Actual velocity

 Each particle’s best position in the past

 Best actual position of any ‘neighbour’ particle

 Best overall achieved position of the whole swarm

• New position is obtained using this velocity 



PARTICLE SWARM OPTIMIZATION

28From https://commons.wikimedia.org/wiki/File:ParticleSwarmArrowsAnimation.gif

https://commons.wikimedia.org/wiki/File:ParticleSwarmArrowsAnimation.gif


PARALLELIZATION OF EA
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• Evaluation of objective function for each individual in the population is 
naturally parallel operation

• Same holds for selection, crossover and mutation in Genetic Algorithm

• It is also possible to take advantage in sorting, matrix multiplication and 
other procedures

• It is possible to use much larger populations/more iterations during the 
same time

GPU computing can be utilized very efficiently



HYBRID OPTIMIZATION
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• Evolutionary Algorithms: very robust, can get out of a local minima

• Gradient-based algorithms: very good at finding local minima

 Best practice: find very good & robust starting point using Evolutionary 
Algorithms and then improve it using deterministic  gradient-based 
algorithm



APPLICATION TO FINANCIAL MODELS
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RASTRIGIN FUNCTION MINIMIZATION
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ACKLEY FUNCTION MINIMIZATION
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VASICEK MODEL
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• Short rate: 𝑟𝑡 = 𝜅 𝜃 − 𝑟𝑡 𝑑𝑡 + 𝜎𝑑𝑊𝑡

• In order to calibrate we try to fit calculated bond prices to market bond 
prices (or calculated rates to market rates)

• Vasicek bond price:

 𝑃 𝑡, 𝑇 = 𝐴 𝑡, 𝑇 ∗ exp(−𝑟 𝑡 ∗ 𝐵(𝑡, 𝑇))

 𝐵 𝑡, 𝑇 =
1−exp(−𝑘(𝑇−𝑡))

𝑘

 𝐴 𝑡, 𝑇 = exp 𝜃 −
𝜎2

2𝑘2
𝐵 𝑡, 𝑇 − 𝑇 + 𝑡 −

𝜎2

4𝑘
𝐵2(𝑡, 𝑇)



VASICEK CALIBRATION RESULTS – 31/08/18
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HESTON MODEL
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• Stock price: 𝑑𝑆𝑡 = 𝜇 − 𝑞 𝑆𝑡𝑑𝑡 + 𝑣𝑡𝑆𝑡𝑑𝑊𝑡
1

• Volatility: 𝑑𝑣𝑡 = 𝜅 𝜃 − 𝑣𝑡 𝑑𝑡 + 𝜉 𝑣𝑡𝑑𝑊𝑡
2

• In order to calibrate we try to fit implied volatilities from calculated 
option prices to the market volatility surface

• Call option price under Heston model:
 𝐶 = 𝑆0𝑒

−𝑞𝜏Π1 − 𝐾𝑒−𝑟𝜏Π2

 Π1 =
1

2
+

1

𝜋
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∞
ℜ

𝑒−𝑖𝑢 log 𝐾𝜙 𝑢−𝑖;𝜏

𝑖𝑢𝜙 −𝑖;𝜏
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HESTON MODEL CALIBRATION RESULTS
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