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Abstract

The paper presents basic principles of the iterative use of wavelet de-noising
principles for the recovery of corrupted or missing signal regions. The main part
of the contribution is devoted to the study of proposed threshold methods for
modification of wavelet decomposition coefficients. Suggested methods include
generalization of soft and hard thresholding algorithms introducing transition
period to enable the use of continuous and differentiable threshold functions.
The theoretical study and numerical experiments applied to simulated time se-
ries provide comparison of results achieved for different number of decomposition
levels and wavelet functions, different threshold values and global or local thresh-
olding for selected thresholding functions. Final results are presented both in
numerical and graphical forms.

1 Introduction

Wavelet transform represents a very efficient mathematical tool for one-dimensional or multi-
dimensional signal analysis and processing. The paper is devoted to the brief description of
wavelet functions used for signal analysis at first. The main part of the paper presents a general
algorithm for signal and image decomposition and reconstruction applied for their de-noising at
first. The final part of the paper presents the use of signal de-noising for the iterative recovery
of signal missing regions.

Mathematical analysis and numerical experiments are devoted to the study of different
wavelet functions and to the optimal choice of a thresholding function and its local or global
application during the process of signal de-noising and interpolation of its missing values.

2 Principles of Signal Wavelet Analysis

Signal wavelet decomposition using wavelet transform (WT) provides an alternative to the short-
time Fourier transform (STFT) for signal analysis [5, 3] resulting in signal decomposition into
two-dimensional function of time and scale.

Wavelet functions used for signal analysis are derived from the initial function W (t) form-
ing basis for the set of functions

Wm,k(t) =
1√
a

W (
1

a
(t − b)) =

1√
2m

W (2−mt − k) (1)

for discrete parameters of dilation a = 2m and translation b = k 2m. Wavelet dilation closely
related to its spectrum compression enables local and global signal analysis. Selected examples
of analytically defined wavelet functions are presented in Fig. 1.

3 Wavelet Decomposition and Reconstruction

The principle of signal and image decomposition and reconstruction using wavelet transform is
presented in Fig. 2 for an image matrix [g(n, m)]N,M . Any one-dimensional signal {x(n)}N

n=1
can

be considered as a special case of an image having one column only. The decomposition stage
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Figure 1: The set of wavelet functions and the effect of their dilation to spectrum compression

includes the processing of matrix [g(n, m)]N,M by columns at first using wavelet (high-pass) and
scaling (low-pass) functions in stage D.1. Let us denote a selected column of the image matrix
[g(n, m)]N,M as signal {x(n)}N−1

n=0
=[x(0), x(1), ..., x(N −1)]′. This signal can be analyzed by

a half-band low-pass filter with its impulse response

{l(n)}L−1

n=0
= [l(0), l(1), · · · , l(L − 1)] (2)

and corresponding high-pass filter based upon impulse response

{h(n)}L−1

n=0
= [h(0), h(1), · · · , h(L − 1)] (3)

The first stage of signal decomposition assumes the convolution of a given signal and the appro-
priate filter coefficients for decomposition by relations

xl(n) =
L−1∑

k=0

l(k) x(n − k) xh(n) =
L−1∑

k=0

h(k) x(n − k) (4)

for all values of n followed by subsampling by factor D.

In the case of signal analysis this procedure is applied to one column of matrix [g(n, m)]N,M

only. Studying images this algorithm is then applied to rows of the image matrix followed by
column downsampling in stage D.2.

The decomposition stage results in this way in two time series (in case of signal processing)
or four images representing all combinations of low-pass and high-pass initial image matrix
processing. The reconstruction stage in the case of image processing includes row upsampling
by factor U at first and row convolution in stage R.1 followed by summation of corresponding
images. The final step R.2 common both for one-dimensional and two-dimensional signals
assumes column upsampling and convolution with reconstruction filters followed by summation
of the results again.
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Figure 2: The principle of signal or image decomposition and reconstruction by wavelet transform



4 Signal De-Noising

Both in the case of one-dimensional and two-dimensional signal wavelet decomposition it is
possible to modify resulting coefficients {c(k)}N

k=1
before the following signal reconstruction

to eliminate undesirable signal components. Methods of such a process assume estimation of
appropriate threshold limits [6] and their application to wavelet transform coefficients.

In the case of soft thresholding it is possible to evaluate new coefficients {cd(k)}N
k=1

using
original coefficients {c(k)}N

k=1
for a chosen threshold limit δ by the following commands

for k=1:N

if(abs(c(k)))<=delta

cd(k)=0;

else

cd(k)=sign(c(k)).*(abs(c(k))-delta);

end

end

Fig. 3 provides an example of the process of signal de-noising by a selected wavelet function
applied to a simulated signal presented in Fig. 3(a) defined by a harmonic function with its several
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Figure 3: Simulated signal de-noising presenting (a) given signal, (b) reconstructed signal,
(c) signal decomposition into two levels, and (d) wavelet coefficients thresholding

missing values. This signal is decomposed providing its wavelet transform coefficients {c(k)}N
k=1

visualized by the scalogram in Fig. 3(c) and their values organized in the vector c presented in
Fig. 3(d). Reconstructed signal presented in Fig. 3(b) has been obtained after the application
of a selected threshold function (Fig. 4).

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
HARD

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
SOFT

THRESHOLDING FUNCTIONS

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
CUSTOM

Figure 4: Hard and soft thresholding functions in compari-
son with custom functions allowing the selection of the tran-
sition period and shrinkage level and their optimization to
minimize the error between the original and de-noised signal
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Different kinds of thresholding functions presented in Fig. 4 include hard, soft and custom
thresholding functions [8] providing the possibility of the choice of the transition lengths and
shrinkage level. Such a possibility can improve the whole process of signal de-noising enabling
optimal selection of a method for modification of wavelet coefficients.

Fig. 5 presents an example of the effect of the transition period and shrinkage level to the
mean square error between original signal and its de-noised version presented in Fig. 3. Optimal
values of these coefficients point to the soft thresholding providing the best results in this case.

Problems closely related to signal de-noising include selection of wavelet decomposition
functions, the choice of the thresholding function to modify wavelet coefficients, the decision
whether to apply global thresholding using the same thresholing function for all decomposition
levels or local thresholding allowing differenciation and mathematical analysis and optimization
of thresholding coefficients.

5 Signal Regions Recovery

The recovery of missing or corrupted signal or image regions represents an important problem
in many applications and there are many possible approaches how to study this problem.

The wavelet transform represents one possible mathematical tool that can be used to
interpolate missing values. The whole algorithm consists of the following iterative steps

• Signal wavelet decomposition into a selected level

• Thresholding of resulting coefficients

• Signal reconstruction

• Replacement of signal values outside the corrupted region by original values

• The following wavelet decomposition and repetition of the whole process

Fig. 3 presents an example of the first step of corrupted signal region recovery assuming
its decomposition, thresholding and reconstruction resulting in values presented in Fig. 3(b).

The complete iterative algorithm changes just coefficients of the lost region using thres-
holding method while all other values are preserved in each step. The algorithm is repeated until
the sum of squared errors (SSE) between the recovered and the original signal is acceptably low
or required PSNR [dB] is achieved. Fig. 6 presents results of such a process after 20 iterations.
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Figure 6: Simulated signal recovery process presenting (a) corrupted signal, recovered signal
after (b) the first and (c) the final iteration of the recovery algorithm, spectrum estimation of
the (d) initial and (e) the final signal (after 20 iterations), and (f) the peak-signal-to-noise-ratio
evolution



Fig. 7 presents the algorithm for definition of thresholding functions selected by the value
of parameter ′sorh′ enabling both hard, soft and custom thresholding for a given limit ′th′ and
selected values of the transition period b and shrinkage a.

function y=LWTthresh(x,sorh,th,b,a)

% Thresholding function

% x - given sequence

% sorh - threshold type

% (’s’-soft,’h’-hard,’v’-vaidyanathan)

% th - threshold limit

% a,b- threshold function constants

% b-relative length of transition (=0-1)

% a-shrinkage from hard (=0) to soft (=1) thresholding

switch sorh

case ’s’

tmp=(abs(x)-th); tmp=(tmp+abs(tmp))/2;

y =sign(x).*tmp;

case ’h’

y =x.*(abs(x)>th);

case ’v’

th0=(1-b)*th; D=th-th0;

yc1=(x.*(1-a).*((abs(x)-th0)./D).^2.*...

(-(a+2)*(abs(x)-th0)./D+3+a)).*(abs(x)>th0 & abs(x)<th);

yc2=(x-sign(x).*a*th).*(abs(x)>=th);

y=yc1+yc2;

otherwise

error(’Invalid argument value’)

end

Figure 7: Definition of a function enabling hard, soft and custom thresholding selected by its
parameter ′sorh′ for a given threshold ′th′ and coefficients a, b used for custom thresholding

Basic commands for wavelet transform de-noising using Matlab notation are summarized
in Fig. 8. Fundamental functions used in this program segment include the following:

(i) [c, l] = wavedec(s, level, wavelet) – wavelet decomposition of signal s up to the given level

for selected wavelet function

% Signal denoising

% Given signal definition

N=32; n=0:N-1; sref=sin(2*pi*0.1*n);

s=sref+1*rands(1,N);

% The decomposition to a given level

level=3; wavelet=’db2’;

[c,l]=wavedec(s,level,wavelet);

% Modification of Wavelet coefficients

delta=thselect(c(l(1):end),’sqtwolog’)

cd=LWTthresh(c,’s’,delta);

% Signal reconstruction

z=waverec(cd,l,wavelet);

Figure 8: Basic commands for wavelet transform de-noising after signal decomposition into a
selected level (= 3) and wavelet (=′ db2′) using estimation of a global threshold limit by function
sqrt(2 ∗ log(length(c(l(1) : end))) selected by parameter ′sqtwolog′



(ii) delta = thselect(x, TPTR) – estimation of a threshold limit for a sequence x using se-
lected method defined by parameter TPTR

(iii) z = waverec(cd, l, wavelet) – wavelet reconstruction using coefficients cd divided by in-
dices in variable l applying a selected wavelet function

These functions enabling signal wavelet decomposition, coefficients thresholding and reconstruc-
tion can be replaced by Matlab function wden using proper parameters defining the type of
thresholding and wavelet decomposition and reconstruction function.

Methods presented above has been verified for simulated signals at first and then applied
to real signals and images. An example of this process applied to a selected real signal de-noising
is given in Fig. 9 presenting gas consumption in the Czech republic.
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Figure 9: Principle of a gas consumption signal decomposition, thresholding and reconstruction

The iterative method of wavelet regions recovery has can be further modified and used
for image processing. Selected result of the recovery of degraded parts of a magnetic resonance
image is presented in Fig. 10. Efficiency of the recovery process provides good enough results
even though they depend upon the degree and extension of corrupted image region and the
choice of wavelet function.

 (a) ORIGINAL IMAGE  (b) RECOVERED IMAGE

Figure 10: Recovery of a real biomedical image of the brain presenting (a) given corrupted
image and (b) recovered image



6 Conclusion

The paper presents similar approach to signal and image de-noising [7] and recovery of its miss-
ing or corrupted values using wavelet transform and providing comparison of different wavelet
functions and thresholding methods. Resulting signal can be then used for its further analysis or
prediction of its values [2]. In the case of the image this approach can be used for reconstruction
of missing parts of images and to more precise classification of their regions [4, 1].
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