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Abstract 
 
This contribution describes a method for ideal de-noising. This method is based on a choice of an optimal basis 
from a library of wavelet orthogonal bases. This is the process of minimizing of the cost functional of entropy 
in contribution with shrinkage method. In particular, the chosen shrinkage methods are the estimation of standard 
deviation σ  and of Donoho-Johnstone universal threshold λ  for the wavelet coefficients. The chosen entropy 
is Shannon entropy and is defined by the discrete distribution of squared wavelet coefficients. The Donoho 
thresholding rule belongs to the simplest non-linear shrinkage technique. 
The result of this ideal de-noising is presented on one example. The algorithm, selecting an optimal basis 
from a library of wavelet bases for ideal de-noising, was created with using MATLAB and The Wavelet 
Toolbox. 
 
1. Representation of the observations 
 
Suppose we have observations . It is natural that these observations are 
corrupted by measurement noise. So, observations can be represented by (1) or by the vector form (2) 
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Niieisiy ,,1, K=⋅+= σ  (1) 
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where ( )Nss ,,1 K=s  is the signal of interest and ( )Nee ,,1 K=e  is white noise with normal (Gaussian) 

probability distribution ( )2,0N σ ,  are zero-mean random variables. We wish to recover s  with small risk 
or mean-squared error (MSE) defined by (3) 
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(where ( ) )Nss ,,1
ˆ K=ys  is a discrete estimator of . s

 
In the recent time, it is very popular to use a fixed wavelet orthogonal basis for noise removal. This process 
known as thresholding scheme can be divided into three steps: 
 
1. Transform of observations into the wavelet basis 
2. Apply thresholding 
3. Return to the original basis 
 
Success of such a de-noising scheme depends on the chosen basis in which we will recover the signal . Since 
a given signal may be recovered well in one basis and not in others, others signals may not be recovered as well 
in the same basis. 
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2. Discrete wavelet transformations 
 
Discrete wavelet transformations map discrete data Niyi ,,1, K=  from the time domain to the time-frequency 
(wavelet) domain Y . The result is a vector of the same size. Wavelet transformations are linear 
and they can be defined by matrices of dimension 

Nii K,1, =
NN × . When the matrix is orthogonal, the corresponding 

transformation is a rotation in NR  in which the data represent coordinates of a point. 
Any function  can be represented as (4) ( )R2l∈f
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(ψ  is the wavelet function, ϕ  is the scaling function) 

This unique representation corresponds to a multiresolution decomposition ( ) jj W∞
−∞=⊕=R2l . Also, for any 

fixed  the decomposition 0j ( ) jWjjjV ∞
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00R2l  corresponds to the representation (5) 
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The first sum in (5) is an orthogonal projection  of  on scaling functional spaces V  while the other 

sums are orthogonal complements of wavelet functional spaces W . 
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The decomposition algorithm (the cascade algorithm and dyadic wavelets) can be described in the matrix 
notation as follows: 
Let the length of the input signal  be , let f mN 2= { }Zh ∈= ssh ,  be the wavelet filter of length K , i.e. only 
K , entries of  are different from zero. h

Denote by  a circulant matrix of size 

 , kH 


+−×− 122 kmkm K,2,1=k  with entries (6) 
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as the position ( . So, ith row is 1st row circularly shifted to the right by )ji, ( )12 −i

kG
 units. This circularity is 

a consequence of using the modulo operator in (6). Similarly, we define a matrix  by using the filter g . 

Coefficients of g  and  are related by h ( ) sK
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Now, we can describe observations in the wavelet domain by (7) or by the vector form (8) 
NizY iii ,,1, K=⋅+= σθ  (7) 

zθY ⋅+= σ  (8) 
with ( ) yWY ⋅== NYY ,,1 K , ( ) sWθ ⋅== Nθθ ,,1 K  and ( ) eWz ⋅== Nzz ,,1 K . Due to orthogonality of , W

( )2,0N σ~z  and ( ) ( )θθs ,ˆMSE=s,ˆMSE
TW=

, moreover it's very simple to find inverse matrix because 

. W−1

The first step of decomposition is defined by  where  is the approximation coefficient 

vector and cD  is the detail coefficient vector. The decomposition process can be iterated, with successive 
approximations being decomposed in turn, so that one signal is broken into many lower-resolution components. 
This process can be shown in Fig. 1. 
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Figure 1 – Multiresolution decomposition 

 
3. Thresholding 
 
The thresholding is the simplest wavelet non-linear shrinkage technique. It is common for all thresholding rules 
to set to 0 the coordinates of a vector , which is subjected to thresholding, if they are smaller in absolute value 
than a fixed non-negative number - the threshold 

Y
λ . Depending on how the coordinates of  are processed 

when they are larger than 
Y

λ  one can define different thresholding policies. The two most common thresholding 
policies are hard and soft. The analytic expressions for the hard- and soft-thresholding rules are (9) and (10) 
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for ( ) RY ∈=≥ NYY ,,,0 1 Kλ . The rules are depicted in Fig. 2. 

 
Figure 2 – Hard thresholding rule for 1=λ  



 
Figure 3 – Soft thresholding rule for 1=λ  

 
The optimal thresholding rules are obtained by choosing the threshold σλ = . Of course, σ  is generally not 
known, and the optimal risk remains unattainable. Assume the model (7), respectively (8). Suppose we have 
an oracle that tells us which of  are close to 0. The oracle suggests only two actions: “keep” or “kill” 

the observation with the index . So, the  suggested by the oracle is , where  or 1. The ideal 
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in this case is given coordinate-wise by ( )σ>=∂ iY1 . The diagonal projection (DP) estimator is 

( ){ }NiiYiY ,,1,ˆ K=>= σ1θ , and its risk is expressed by 
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which can be readily derived by discussing the two possible cases: σ<iY  and σ≥iY . The oracular risk (11) 
is ideal and unattainable if σ  is not known. However, it is useful as a benchmark for evaluating other rules. 
Donoho and Johnstone have shown that the risk of the soft-thresholding rule with an universal threshold 

Nlog2σλ =  is close [up to a multiple ( Nlog21 )+ ] to the oracular risk ( )θ,DPR . 
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4. Choice of an ideal wavelet basis from a library 
 
Suppose we have a library L consisting of finitely many orthogonal bases { }LBBL ,,1 K= , where 

{ }Niig ,,1, K==B  denotes a set of real orthogonal N-dimensional vectors which form columns of a matrix 
of discrete wavelet transform of N-dimensional data vectors. The created library L can contain such wavelet 
bases as bases from Daubechies’ family or biorthogonal family. The best ideal risk in any basis in the library is 
(13) 
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=
B
RR BsLs ,min,* )  (13) 

of course this risk is achievable only with the aid of a basis oracle, which selects for us the basis achieving 
the optimum; a coordinate oracle informing which coordinates in that basis are worth estimating is also 
necessary. 
Selecting an ideal basis by using the best ideal risk (13), respectively by using the oracular risk (11) and (12), is 
practically unavailable, because these risks are functionally depend on the vector s , respectively on the vector 

. Of course, these vectors are unknown. We want to find them. So, it means that we need another criteria upon 
which the bases will be judged. 
θ

Such criteria are usually expressed in the form of a cost functional E. One of these cost functionals is Shannon 
entropy defined by (14) 
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P  in this notation means a probability and it’s defined as the discrete distribution of squared wavelet 
coefficients Y  by (15) j
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22 yy  is the norm of the vector containing wavelet coefficients. For us there are only 

approximation coefficient vectors extracted by decomposition (j is the number of the decomposition level). 
Now we can find the best, respectively the optimal orthogonal basis according to Shannon entropy (14), 
and moreover we find out the optimal decomposition level with the minimal entropy. 

( )BELBB ,minargˆ Y∈=  (16) 

 
5. Calculation of the standard deviation 
 
When we have estimated the best basis from a library and the optimal decomposition level with the minimal 
entropy, we can estimate the value of standard deviation σ̂ . We can propose that the useful signal  is mainly 
low-frequency and the noise is mainly concentrated on the first detail level. We can define the following 
inequality (17) with initialisation  
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where ,  is the sequence of wavelet coefficients sorted in the order of decreasing of their 

absolute values: 
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sorted
+≥ kk YY . (The first member is the wavelet coefficient with the maximum 

absolute value.) The inequality (17) helps us to find the beginning of the detail part, respectively the end 
of the approximation part. Now, it's possible to separate the detail part of the decomposition on the first level. 
The decision rule (17) is based on the fact resulting from asymptotic distribution of independent Gaussian 
random values: 

( ) ( ) ( )
1ln2max

lim,0~ 2

2

12 =















≤⇒ ≤≤

∞→ N
N

X

tX
PNtXIf Nt

N
σ  (18) 

where P  denotes the probability. 
Finally, we can already compute the robust estimate of standard deviation of the noise 

( ){ } NMMnYmedian n ,,1,,ˆ sorted K+== yσ  (19) 
In case when the value of M is greater than the maximal length of the input signal, we cannot use the equation 
(19) to calculating of the standard deviation because we cannot find the beginning of the first detail level. So, we 
can use equation (20) 
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6. Designed algorithm 
 
Designed algorithm realizing the optimal basis choice from a library was created by using MATLAB. Name 
of he created function is ideal_denoising. This function has three input arguments: 
 
1. y input vector containing sample data of observations y  
2. max_level maximal level of decomposition 
3. library string containing names of wavelet bases 
 
and five output arguments: 
 
1. Emin Minimal Shannon entropy for the best basis from a library 
2. type type of the best wavelet basis from a library 
3. level minimal decomposition level for the best wavelet basis 
4. sigma the calculated robust estimate of standard deviation of the noise 
5. smooth vector containing the smoothed function according to the best wavelet basis from 
  ibrary, the optimal decomposition level and the hard thresholding rule with the 
 niversal (Donoho-Johnstone) threshold λ  
 
function [Emin,type,level,sigma,smooth] = ideal_denoising(y,max_level,library) 
 
ly = length(y); 
a = y; 
minimum = 0; 
 
% Searching for the minimal Shannon entropy 
% of the all bases of the library 
for basis = 1:1:length(library) 
   for i=1:1:max_level 
      [a,d] = dwt(a,library{basis}); 
      E(basis,i) = wentropy(a,'shannon'); 
      if (E(basis,i) >= minimum) 
         level(basis,1) = i-1; 
         break; 
      else 
         minimum = E(basis,i); 
      end 
   end 
   a = y; 
   minimum = 0; 
end 
E = E'; 
% Searching for the best wavelet basis 
% with the minimal Shannon entropy 
% and the appropriate decomposition level 
absE = abs(E); 
[i,j] = find(absE == max(max(absE))); 
Emin = E(i,j); 
level = i; 
type = library{j}; 
 
% Searching for the first detail part 
[a,d] = dwt(y,library{j}); 
coef = [a;d]; 
abscoef = sort(abs(coef)); 
k=0; 
for i=1:1:length(abscoef) 
   sortedcoef(i) = abscoef(end-k); 
   k = k+1; 
end 
sortedcoef = sortedcoef'; 
N = length(sortedcoef); 
for M = 0:1:N 
   lnum = abs(sortedcoef(M+1)).^2; 
   lden = sum(abs(sortedcoef((M+1):N)).^2); 
   left_side = lnum/lden; 
   right_side = 2*log(N-M)/(N-M); 
   [left_side right_side]; 
   if (left_side > right_side) 
      break; 
   end 



end 
if (M==0) 
   M=1; 
end 
 
% Computing of the standard deviation 
if ( M < ly) 
   sigma = median(abs(sortedcoef(M:N)))/0.6745; 
else 
   sigma = median(abs(sort(d)))/0.6745; 
end 
 
% Hard thresholding on the optimal decomposition 
% level with the threshold lambda and by using the best wavelet basis of a library 
[C,L] = wavedec(y,level,type); 
lambda = sigma*sqrt(2*log(ly)); 
smooth = wdencmp('gbl',y,type,level,lambda,'h',1); 
 
7. Creating of the new library 
 
It is very simple to create a new library or add a new wavelet basis to the existing library. We can use 
a command save. On the following example is shown how to create a new library containing Daubechies' 
wavelet bases from the Wavelet Toolbox and how to add a new basis: 
Daubechies = {'db1','db2'}; 
Daubechies{end+1} = 'db3'; 
save Daubechies 
 
It is also very simple to load an existing library by using the command load: 
load Daubechies 
 
8. Case study 
 
Now it’s shown a result of using the designed algorithm. The signal (composed of three sine functions with 
the amplitudes and frequencies in this order: kHzfAkHzfAkHzfA 2,03,203;5,02,502;11,1001 ====== ) 

is corrupted by the white noise of the variance approximately , respectively by standard deviation 7778,982 =σ
9387,9=σ . The sampling frequency is Hzsf 0001,0= . Created library Daubechies contains 20 Daubechies' 

wavelet bases from 'db1' to 'db20' (for more see The Wavelet Toolbox Manual). Maximal decomposition level is 
20. 
The algorithm selected as the best wavelet basis 'db20', decomposition level 20 with the minimal Shannon’ 
entropy . The estimated standard deviation is 121011,7 ⋅−=E 9935,9ˆ =σ  and it is very close to the real standard 
deviation of the noise. The canculated value of the threshold λ  is 42, 8916. 



 
Figure 4 – Original signal and white noise 

 
Figure 5 – Original signal with noise and smoothed signal (detail) 

9. Conclusion 
 
This contribution dealt with the problem that we have a lot of the wavelet bases to choose for signal processing. 
It was resolved by choosing the ideal basis from the created library based on Shannon’ entropy. Further, 
the measurement noise was cancelled by tresholding. The value of threshold λ  was canculated by estimating the 
value of the standard deviation σ  of this noise. 
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