
SCHEDULING TOOLBOX FIRST PREVIEW
Michal Kutil

Department of Control Engineering
Faculty of Electrical Engineering, Czech Technical University

Abstract. Scheduling theory has been a popular discipline for a last couple of years.
However, there is no tool, which can be used for a complex scheduling algorithms
design and validation. Creation of this tool is our goal and its first preview is
described in this paper. The tool is written in Matlab object oriented programming
language and it is used in Matlab environment as a toolbox. Main objects are Task,
TaskSet and Problem. Object Task is a data structure including all parameters of the
task as process time, release date, deadline etc. Objects of a type Task can be grouped
into a set of tasks and other related information as precedence constrains can be
added. Object Problem is a small structure describing classification of deterministic
scheduling problems in Graham and Błażewicz notation. These objects are used as a
kernel providing general functions and graphical interface, making the toolbox easily
extensible by other scheduling algorithms.

INTRODUCTION

Scheduling algorithms were known many years ago, but currently there are no good tools
used to work with those algorithms. Existing tools are usually developed to solve just one
specific problem, not for general problem solution. Presented toolbox is intended to be used
for solving those general scheduling problems. The first major part of the toolbox is used to
interpret, present and save data from scheduling toolbox. The second part implements basic
scheduling algorithms. Data from scheduling problems can be divided into four groups: tasks,
resources, precedence constrains and optimality criterions.

TASK

Task is a basic term in scheduling problems, which describes any unit of work that is
scheduled and executed by the system. The task is described by the following parameters:

Name (Name) label of the task

Processing time (ProcTime) is the time necessary to the processor for executing the
task without interruption

Release time (ReleaseTime) is the time at which a task becomes ready for execution

Deadline (Deadline) specifies a time limit by which the task has to be
completed, otherwise the scheduling is assumed to fail

Due date (DueDate) specifies a time limit by which the task should be
completed, otherwise the criterion function is charged
by penalty

Weight (Weight) expresses the priority of the task with respect to other
tasks

Processor (Processor) specifies dedicated processor at which the task must be
executed

The task is represented by the object data structure with the name task in Matlab. This object
is created by the command with the following syntax rule:

t1 = task([Name,]ProcTime[,ReleaseTime[,Deadline[,DueDate
 [,Weight[,Processor]]]]])

Command task is a constructor for object of type task whose output is stored into a variable
(in the syntax rule above it is the variable t1). Properties contained inside the square brackets
are optional. Creating the objects of the type task in matlab are shown on figure 1.

>> t1 = task(5)
Task ""
 Processing time: 5
 Release time: 0
>> t2 = task('task2',5,3,12)
Task "task2"
 Processing time: 5
 Release time: 3
 Deadline: 12
>> t3 = task('task3',2,6,18,15,2,2)
Task "task3"
 Processing time: 2
 Release time: 6
 Deadline: 18
 Due date: 15
 Weight: 2
 Processor: 2

Fig. 1. Creating a task objects

A SET OF TASKS

Objects of the type task can be grouped into a set of tasks. A set of tasks is an object of the
type taskset and can be created by the command taskset. Syntax for this command is as
follows:

T = taskset(tasks[,prec])

where variable tasks is an array of objects of the type task and prec is a matrix containing
precedence constrains between tasks. If there are not any precedence constrains between the
tasks, we can use a shorter entry for creating a set of tasks (Fig. 2 � first line). The command
plot can be used to draw a set of tasks in the Gantt chart (Fig. 3).

>> T = [t1 t2 t3]
Set of 3 tasks
>> T=taskset(T,[0 1 1; 0 0 1; 0 0 0])
Set of 3 tasks
 There are precedence constraints
>> plot(T)

Fig. 2. Creating a set of tasks and adding precedence constrains

Name of the task

Release time

Due Datetask3

Task

Deadline task2

Precedence
constraint

0 2 4 6 8 10 12 14 16 18
t

Fig. 3 Gantt chart for a set of scheduled tasks

PROBLEM

The object problem is a small structure describing the classification of deterministic
scheduling problems in the notation proposed by Graham et al. [1] and Błażewicz et al. [2].
An example of its usage is shown in the following code.

>> p = problem('P|prec|Cmax')
P|prec|Cmax

This notation consists of three parts (α | β | γ). The first part (alpha) describes the processor
environment, the second part (beta) describes the task characteristics of the scheduling
problem as the precedence constrains, or the release time. The last part (gamma) denotes an
optimality criterion. The command is is used to ask whether any notation includes specific
description.

CASE STUDY

In this chapter a solution of the P|prec|Cmax problem [3] is shown. There are nine tasks with
precedence constrains, see Fig. 4. Processing time of each respective task is written after its
name.

T1/3 T2/4 T3/2

T7/5

T8/4

T4/4
T6/2 T5/4

T9/8

Fig. 4 submission of scheduling problem

Data inscription and solution of this problem by the scheduling toolbox is shown on Fig. 5.

>> t1 = task('t1',3);
>> t2 = task('t2',4);
>> t3 = task('t3',2);
>> t4 = task('t4',4);
>> t5 = task('t5',4);
>> t6 = task('t6',2);
>> t7 = task('t7',5);
>> t8 = task('t8',4);
>> t9 = task('t9',8);
>> prec = full(sparse(...
 [1,2,3,3,3,4,5],[7,4,4,5,6,8,9],[1,1,1,1,1,1,1],9,9));
>> T = taskset([t1 t2 t3 t4 t5 t6 t7 t8 t9],prec);
>> p = problem('P|prec|Cmax');
>> Tsolution = listsch(T,p,2);
>> plot(Tsolution,'color',0)

Fig. 5 Solution of the scheduling problem

The command listsch is built-in function of the scheduling toolbox. This function computes
the schedule by the List scheduling algorithm [3]. The code of this function is included in the
appendix. The final schedule is shown on . This chart was drawn by the command plot. Fig. 6

 Fig. 6 Finnal schedule

0 5 10 15 20 25

Processor1

Processor2

t1

t

t2

t3 t4 t5

t6t7 t8

t9

CONCLUSION AND FUTUREWORK

Commands from the scheduling toolbox mentioned above are just a part of all the commands.
These commands are necessary to show the basic idea and function principle. This article is
just the first preview and is presented to open the discussion about this topic. We would like
to connect our scheduling toolbox with Matlab Web Server and to prepare web interface for
this toolbox. This interface helps to include your own problem into the scheduling toolbox
and solve this problem online via internet. All the commands built in the tool are listed in the
appendix.

LITERATURE

[1] R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Optimization and
approximation in deterministic sequencing and scheduling theory: a survey, Ann.
Discrete Math. 5, 1979, 287-326.

[2] J. Błażewicz, J. K. Lenstra, A. H. G. Rinnooy Kan, Scheduling subject to resource
constrains: classification and complexity, Discrete App. Math. 5, 1983. 11-24.

[3] J. Błażewicz, K. H. Ecker, E. Pesch, G. Schmidt, J. Węglarz, Scheduling Computer
and Manufacturing Process. 2nd printing. Springer, 2001. ISBN 3-540-41931-4

[4] G. C. Butazo, Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications. Kluwer Academic Publishers, 1997.
ISBN 0-7923-9994-3

CONTACT

Michal Kutil (kutilm@fel.cvut.cz)
Department of Control Engineering
Faculty of Electrical Engineering, Czech Technical University in Prague
Karlovo náměstí 13, 121 35 Praha, Czech Republic

APPENDIX

List Of Commands In Scheduling Toolbox
General objects of toolbox.

task create object of task
taskset create set of tasks
problem define scheduling problem

Scheduling algorithms

edf earliest deadline first
listsch list scheduling

Tasks

add_scht add schedule to the task
get access values of task properties
plot draw the task with properties
set set/modify properties of task

Set of tasks (taskset)
add_schedule add schedule to taskset
count returns amount of taskt inside the set of tasks
get access values of taskset properties
plot draw the tasks
set set/modify properties of taskset

Problem

is check if property of standard notation is set

List Scheduling

% Inicialization
pr = get(taskset,'prec'); % precedens constrains
n = count(taskset); % number of tasks
nonassign = ones(1,n);

start = zeros(1,n);
processor = zeros(1,n);
lenght = get(taskset,'proctime');

si = zeros(1,m);

% List Scheduling
for j = 1:n
 [sk,pk] = min(si);
 timecondition = max(repmat(((~nonassign).*(lenght+ ...
 start))',1,n).*pr) <= sk;
 % predecessor is finnished or
 % isn't started or is without predecessor

 withoutpr = ~(nonassign*pr) ;
 % without predecessor or preddecesor is scheduled

 nawp = find(nonassign.*withoutpr.*timecondition);
 % non-assigned which are without predecessor or
 % predecessor is finnished

 nawp = nawp(1); % First from list

 % add to schedule
 start(nawp) = sk;
 processor(nawp) = pk;
 si(pk) = si(pk) + lenght(nawp); %sk = sk + pj
 nonassign(nawp) = 0; % Take out from list
end

add_schedule(taskset,'List Scheduling', ...
 start,lenght,processor);

