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Abstract
The distributed parameters systems can be described by a linear two-dimensional
(dependent on two spatial directions) parabolic partial differential equation. This
paper deals with a transformation of this model to the classical linear dynamical
state space model which can be used for control design. For accurate description, this
model has a large dimension which can produce problems with advanced controller
design, for example, with model predictive control approach. Therefore a model
reduction has to be used for a controller design. The influence of the model reduction
on the model accuracy is discussed.
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1 INTRODUCTION

There are many industrial processes which have
a distributed parameters behaviour. Consequently,
these processes cannot be modelled by lumped in-
puts and lumped outputs models for correct repre-
sentation.

This paper deals with two-dimensional dyna-
mic processes (systems with parameters dependent
on two spatial directions) which can be described
by lumped inputs and distributed output models.
These models can be mathematically described by
partial differential equations (PDE) [2].

Unlike ordinary differential equations, the PDEs
contain, in addition, a derivative with respect to the
spatial directions. Consequently, the partial diffe-
rential equations lead to a more accurate models
but their complexity is larger.

The dynamic behaviour of the distributed para-
meters system, which is described by the PDE, can
be approximately described by a finite-dimensional
model, for example, by using the finite difference
method [3]. Then the ordinary differential equation
model with large dimension is obtained and can be
used for a finite-dimensional controller design.

Unfortunately, for online solving a optimization
problem, e.g. model predictive control approach,
the large model dimension introduces a problem for
the control design. Therefore a model reduction
method is used and the influence of the model re-
duction on the model accuracy is presented.

The paper is organized as follows. In section 2,
the distributed parameters model for the finite con-
troller design is developed. In section 3, two mo-
del reduction methods are described and these mo-
del reduction methods are compared in a demon-
stration example in section 4.

2 DISTRIBUTED PARAMETERS PRO-
CESS DESCRIPTION

In this section, a heat transfer process model,
which is described by a two-dimensional linear pa-
rabolic PDE, is developed for the finite-dimensional
controller design. At first, the stationary PDE
is transformed to a linear equations system using
the second order finite difference approximation [2].
Then the evolution partial differential equation is
transformed to a linear discrete system using the
implicit scheme [3].



2.1 Stationary Partial Differential Equa-
tion

For the surface thermal conductivity λ [W/K]
independent on the temperature Θ [K] and a sur-
face heat source f(x, y) [W/m2], the heat transfer
process in the stationary case leads to the parabolic
PDE

−λ

(
∂2 Θ(x, y)

∂ x2
+

∂2 Θ(x, y)
∂ y2

)
= (1)

= −λ ∆Θ(x, y) = f(x, y) .

Then the unknown temperature Θ must satisfy
equation (1) on an open set Ω = (0, L1) × (0, L2)
and a boundary condition on ∂Ω. Note that ∂Ω
means the boundary of the set Ω.

In this paper, it is used the boundary condi-
tion which specify the temperature gradient on the
boundary ∂Ω by the following statement

−λ
∂ Θ(x, y)

∂ n
= α

(
Θ(x, y)−Θs(x, y)

)
(2)

where n is the normal line, α [W/(mK)] is an ex-
ternal heat transfer coefficient and Θs(x, y) is the
surrounding temperature. Note that equation (2) is
known as Newton boundary condition or the boun-
dary condition of the third kind [2].

For the transformation of the PDE (1) with
the Newton boundary condition (2) to the finite-
dimensional model, the set Ω is covered by an ima-
ginary mesh so that the values of mesh points satisfy
ΘΘΘi,j = Θ(i δx, j δy) and Fi,j = f(i δx, j δy) where
δx and δy are the grid sizes of the imaginary mesh
and i, j are row and column indices respectively
(see Figure 1). Matrix ΘΘΘ is the matrix of values of
temperatures in the mesh points.
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Figure 1: The mesh on the set Ω

Define ω as the set of all interior points of the
set Ω

ω=
{(

iδx, jδy
)| i=1, 2, . . . , N1−1; j =1, 2, . . . , N2−1

}

and ω̄ as the set of all points of the set Ω

ω̄ =
{(

iδx, jδy
)|i = 0, 1, . . . , N1; j = 0, 1, . . . , N2

}
,

where the grid sizes are

δx =
L1

N1
, δx =

L2

N2
. (3)

Then the set of boundary points δω is δω = ω̄ \ω.
Using the second order difference approximation

of the second derivative [3]

∂2Θ
∂ x2

≈ ΘΘΘi+1,j − 2ΘΘΘi,j + ΘΘΘi−1,j

δx2
= ∆xΘΘΘi,j ,

∂2Θ
∂ y2

≈ ΘΘΘi,j+1 − 2ΘΘΘi,j + ΘΘΘi,j−1

δy2
= ∆yΘΘΘi,j ,

equation (1) can be written as the equation system

cs ΘΘΘi+1,j + ce ΘΘΘi,j+1 + cn ΘΘΘi−1,j + (4)
+ cw ΘΘΘi,j−1 + cp ΘΘΘi,j = Fi,j on ω ,

where the coefficients are

cs =cn =− λ

δx2
, ce =cw = − λ

δy2
, cp =

2λ

δx2
+

2λ

δy2
.

Using the first order difference approximation and
elementary rearrangement, the Newton boundary
condition (2) can be written as

bx ΘΘΘi,j + bn ΘΘΘi+1,j = ΘΘΘsi,j for i = 0 ,

bx ΘΘΘi,j + bs ΘΘΘi−1,j = ΘΘΘsi,j for i = N1 ,

by ΘΘΘi,j + be ΘΘΘi,j+1 = ΘΘΘsi,j for j = 0 ,

by ΘΘΘi,j + bw ΘΘΘi,j−1 = ΘΘΘsi,j for j = N2

(5)

where ΘΘΘsi,j = Θs(i δx, j δy) and the coefficients are

bs = bn = − λ

α δx
, be = bw = − λ

α δy
,

bx = 1 +
λ

α δx
, by = 1 +

λ

α δy
.

Then elements of the matrix F satisfy

Fi,j = f(i δx, j δy) on ω ,

Fi,j = Θs(i δx, j δy) on δω.

When we define vectors

θθθ=




ΘΘΘ( : , 0)
ΘΘΘ( : , 1)

...
ΘΘΘ( : , N2−1)

ΘΘΘ( : , N2)




, f =




F( : , 0)
F( : , 1)

...
F( : , N2−1)
F( : , N2)




, (6)

l = j(N1 + 1) + i



where ΘΘΘ( : , 0) means the zero column of the matrix
ΘΘΘ, ΘΘΘ( : , 1) the first column and so on, the equation
system (4) with equations (5) can be written in
compact form

Pθθθ = f (7)

where the matrix P equals

P =




Ī Ĩ
D̄ Īn D̄

D̄ Īn D̄
. . . . . . . . .

D̄ Īn D̄
Ĩ Ī




. (8)

Note that all submatrices in the matrix (8) are
square with dimension (N1 + 1)× (N1 + 1) and are
equal to

Īn =




bx bn
cn cp cs

cn cp cs

. . . . . . . . .
cn cp cs

bs bx


, D̄=




0
cw

cw

. . .
cw

0


,

Ī=




b̃ b̃s

by

by

. . .
by

b̃s b̃


, Ĩ=




b̃e

bw

bw

. . .
bw

b̃e




where

b̃ = 1 +
λ

2αδx
+

λ

2αδy
,

b̃s = − λ

2αδx
, b̃e = − λ

2αδy
.

2.2 Evolution Partial Differential Equation
For the thermal conductivity λ independent on

the temperature Θ, the heat transfer process in
the non-stationary (evolution) case leads to the
following parabolic PDE

ρ c0
dΘ(x, y, t)

dt
− λ∆Θ(x, y, t) = f(x, y, t) (9)

where ρ is the density of a medium and c0 is its
thermal capacity. Then the unknown temperature
profile Θ(x, y, t), dependent on time t, must satisfy
equation (9) on an open set Ω and the boundary
condition on ∂Ω for all time horizon t̃ ∈< t0, tend >
and the initial condition Θ(x, y, t0) = Θinit(x, y).

Using the implicit scheme [3] and the statio-
nary PDE in the compact form (7), the evolution
PDE (9) can be written as

θθθ(k+1) = Mθθθ(k)+Nf(k), θθθ(t0) = θθθinit, (10)

where matrices M and N equal

M =
(
I+

δt

ρ c0
P

)−1

, N =
(
I+

δt

ρ c0
P

)−1 δt

ρ c0
(11)

where I is the identity matrix with the correspon-
ding dimension.

3 MODEL REDUCTION METHODS
The accuracy of the model (10) increases with

decreasing grid sizes δx and δy. Unfortunately, for
the advanced controller design, the low dimension
model is needed. In this section, the model re-
duction by balanced truncation is shortly described.

3.1 Model Reduction by Balanced Trun-
cation

There are infinitely many different state space
realizations for a given transfer function. But
some realizations are more useful in control design.
One of these realizations is the balanced realization
which gives balanced Gramians for controllability
Wc and observability Wo [4]. In addition, these
Gramians are equal to the diagonal matrix ΣΣΣ

Wc = Wo = ΣΣΣ = diag (σ1, σ2, . . . , σn) .

Note that the decreasingly order numbers,

σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0,

are called the Hankel singular values of the system.
We suppose σr À σr+1 for some r ∈ 〈1; n).

Then the balanced realization implies that those
states corresponding to the singular values of
σr+1, . . . , σn are less controllable and observable
than those states corresponding to σ1, . . . , σr. The
states corresponding to the singular values of
σr+1, . . . , σn have smaller influence on the input-
output behaviour of the system. Therefore, trun-
cating those less controllable and observable states
will not lose much information about the system
and the dimension of the model can be very small.

3.2 Reduced Model for the Control Design
The reduced model for control of the evolution

PDE (9) with the Newton boundary condition (2)
can be written as

x(k+1) = Ax(k) + Bu(k) + Ez(k), x(t0)=x0,

y(k) = C x(k) + Du(k) (12)

where x is a state of the model, y is its output, u is
its input (manipulated variable), z represents the
surrounding temperature and A, B, C, D, E are
state matrices.
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Figure 2: Steady-state temperature distribution Θ(x, y) and system output y

4 DEMONSTRATION EXAMPLE
Consider a heat transfer process on the area L1=

L2= 0.9 m which is described by the equation (9)
with constants λ = 51 W/K, ρ = 2500 kg/m2,
c0 = 1259 Ws/(kg K) and α = 1.14 W/(mK). The
grid sizes are δx = δy = 0.02 m and the sampling
period is Ts = 300 s.

Consider that temperature of the heat transfer
process is measured in 64 points which are uniform
distributed over the area Ω.
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Figure 3: Heat source distribution f(x, y)

The heat source distribution f(x, y) is shown in
Figure 3. Figure 2a presents the steady-state tem-
perature distribution for this heat source and the
surrounding temperature Θ = 340 K and Figure 2b
shows the system output y – temperature in several
measurement points.
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Figure 4: Hankel singular values of the system
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Figure 4 shows the Hankel singular values of the
system. From this figure follows that the system
contains one singular value which is greater than
100 (red point in the figure), four singular values
which are greater than 10 (redandgreenpoints) etc.

In this paper, the balanced truncation is used
for r ∈ {18, 13, 9, 5} states. Figure 5 shows the time
response of Frobenius norm [1] of the model output.
Note that the input signal of the system is unit step.
From this figure follows that the Frobenius norm re-
aches a steady state for all reduced models.

5 CONCLUSION
The state space model of the distributed para-

meters system which is described by the linear two-
dimensional parabolic partial differential equation
is developed. Unfortunately, the dimension of this
model is large and is not suitable for the advan-
ced control design approach. Therefore the mo-
del reduction by balanced truncation is used. The
models errors are compared and presented on de-
monstration example of the heat transfer process.
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