
Function Electrically Stimulation
of the Calf Muscle Using

Matlab and Polynomial Toolbox

Petr Urban∗,∗∗, Michael Šebek∗,∗∗
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Abstract
This work is concerned with the design of robust control systems for the control of
ankle moments generated by the electrical stimulation of the human calf muscle.
We try to design robust controllers using functions of Polynomial Toolbox 3.0
and SeDuMi. This work is made in cooperation with Centre for Rehabilitation
Engineering in University of Glasgow.

1 Introduction

This work is engaged in robust control of electrically-stimulated muscle of people with spinal
cord injuries. In this paper we present a simple techniques to design the robust controller of
force (moment) generated at human ankle joint by electrically stimulated calf muscles. This is
a part of the problem of designing controller that stabilize the vertical posture of paraplegia
when they would like stand (unsupported standing).

This work is made in cooperation with Centre for Rehabilitation Engineering in University of
Glasgow. Our work on this problem is design controllers that could have been used in practical
application. The main idea of this work is to create small box that includes controller and other
necessary tools for unsupported standing, walking, cycling etc. Other work like identification
of the transfer functions of the muscles and practical experiments are doing by people around
Prof. Ken Hunt at the Department of Mechanical Engineering, University of Glasgow. He is
header of Centre for Rehabilitation Engineering - CRE, for more details about this group you
can see [2].

2 The System description

People from CRE have been developing feedback systems for control of unsupported standing
in complete paraplegia (namely Donaldson, 1993; Donaldson, Barr, Phillips & Perkins, 1996;
Hunt, Munih, Donaldson & Barr, 1998b; Hunt et al., 1997; Munih et al., 1997). In its simplest
form the body is regarded as a single-link inverted pendulum with moment only around the
ankle joint, see Figure 1. Where θ(t) is the inclination angle moment and p(t) is the pulse
width of the stimulation. Cm is the moment controller and Cθ is the angle controller. The
desired values for ankle moment and inclination angle are mref and θref , respectively.



Table 1: Parameters of the identified plant models

Model Transfer function Bandwidth DC-gain
(rad/s) (Nm/µs)

1 0,02708q−1

1−0.9662q−1+0.254q−2 11.5 0.094

2 0,03311q−1

1−1.168q−1+0.3766q−2 9.9 0.1587

3 0,02671q−1

1−1.248q−1+0.3882q−2 6.1 0.1905

4 0,01885q−1

1−1.174q−1+0.2641q−2 2.8 0.2092

Figure 1: Control loop

Experimentally, this situation has been realized by standing subject in an apparatus known
as the ”Wobbler” (Donaldson, Munih, Philips & Perkins, 1997), as shown in Figure 2. For more
information you can see [1] or [2].

Figure 2: Subject standing in Wobbler and placement of electrodes on the calf muscle.

Transfer functions of models are listed in Table 1 and their characteristics are shown in
Figure 3. They were obtained from ARX model identification. This problem is described in [1].
Against the [1] we have reduce number of models because one of models haven’t correspond
with presented data and characteristic.



Figure 3: Characteristic of the local models identified in 4 points.

3 Design of controller

For design of the controller we have used Polynomial Toolbox 3.0, see [4]. In this last
version functions from Didier Henrion are implemented. These functions use LMI methods
implemented in the LMI solver SeDuMi [5] and SeDuMi Interface [6]. For more details
about these functions you can see [3].

How we can design the robust controller using these functions:
Let the Pi = Ni/Di, i = 1, ..., 4 is the set of transfer functions all models.

1. Like a first we must select the nominal model. Our choice is Model 3, because it was
identified in the mid-range operating point.

2. Using the function ptopdes we obtain only controller that stabilize our models but we
need provide the zero steady-state error. So we must add to the controller the integrating
part (1− q)−1. In praxis this means that we add the integrating part to models transfer
functions.

Pi =
Ni

Di

q

(q − 1)
=

Ni new

Di new

3. Now we must design a controller that stabilize the nominal model. For this we use the
function pplace (for help you can see [4]):

poles=[0.3,-0.3,0.3-0.7j,0.3+0.7j,0.1-0.2j,0.1+0.2j];

[n,d]=pplace(N_new{jj},D_new{jj},poles);

4. Using
Y ∗N new(3) + X ∗D new(3) = CL

we obtain the central (nominal) closed loop polynomial. Now we can choose the stability
region using the matrix S. Default setting for discrete time polynomials is the unit circle

S =

[ −1 0
0 1

]
,

but our choice is the circle with the radius 0.8 and then

S =

[ −0.82 0
0 1

]
,



For more details about choosing matrix S you can see [3].

5. The next step is design of the robust controller using ptopdes :

[X,Y]=ptopdes(N_new,D_new,CL,S);

where Nnew and Dnew are cell arrays:

N_new{1} = 0.02708*q^1 * q;

D_new{1} = 1*q^2 - 0.9662*q^1 + 0.254) * (q-1);

N_new{2} = 0.03311*q^1 * q;

D_new{2} = 1*q^2 - 1.168*q^1 + 0.3766) * (q-1);

N_new{3} = 0.02671*q^1 * q;

D_new{3} = 1*q^2 - 1.248*q^1 + 0.3882) * (q-1);

N_new{4} = 0.01885*q^1 * q;

D_new{4} = 1*q^2 - 1.174*q^1 + 0.2641) * (q-1);

6. Last step consists from adding the integrating part back to the controller:

C =
X

Y

(q − 1)

q

4 Simulations

In this section the results of controller design are presented. Simulations have been made in
Matlab R14 and Matlab Simulink. The designed controller has this transfer function:

C =
0.02192z4 − 0.005713z3 − 0.007204z2 − 0.008468z − 0.0005313

z4 − 0.4699z3 + 0.1536z2 − 0.2932z

Figure 4: Simulink schema of the feedback moment control.
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Figure 5: Roots of closed loop polynomial and result of the simulation - the bold line is the
reference, the dashed line is the ankle moment.

5 Conclusions

Based on results it seem to be the LMI polynomial methods good candidate for design of con-
trollers for this problem, see Figure 5. We show only one example of the result of simulation
because all simulation has the same result for all four models. But still we must be careful
because these results are only from theoretical simulations. In practical experiment we must
assume that there are much differences e.g. between a healthy person and a paraplegia (the
healthy person has different sensitivity threshold and well-developed muscles than the para-
plegia). So differences between models are much more different. Here is the problem of models
identification and control constraints.
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