
AN ALGORITHM FOR NONLINEAR LEAST SQUARES

M. Balda

Institute of Thermomechanics, Academy of Sciences of the Czech Republic, v. v. i.

Abstract

Optimization Toolbox of MATLAB represents very mighty apparatus for solution
of wide set of optimization problems. Also basic MATLAB provides means for
optimization purposes, e.g. backslash operator for solving set of linear equations
or the function fminsearch for nonlinear problems. Should the set of equations
be nonlinear, an application of fminsearch for finding the least squares solution
would be inefficient. The paper describes a better algorithm for the given task.

1 Principles of Levenberg-Marquardt-Fletcher algorithm

Let us have a general overdetermined system of nonlinear algebraic equations

f(x, c) .= y ⇒ f(x, c)− y = r . (1)

Its solution, optimal in the least squares sense, is sought by minimizing ‖r‖2
2 = rT r. Necessary

conditions for the optimum solution are zero values of partial derivatives of ‖r‖2
2 due to unknown

coefficients c, i.e.
∂‖r‖2

2

∂c
= 2

∂rT

∂c
r = 2 JT r = 2v . (2)

Elements of J , which is called Jacobian matrix, are Jij = ∂ri
∂cj

. Vector v should equal zero vector
in the point of optimal solution c∗. It is sought after kth iteration in the form

c(k+1) = c(k) + ∆c(k) . (3)

Let residuals r(c) are smooth functions, then it holds:

r(k+1) = r(k) +
∂r(k)

∂c(k)
∆c(k) + · · · . (4)

After some manipulations, the equation for the solution increment takes the form

A(k) ∆c(k) − J (k)T
r(k+1) = −v(k) , (5)

in which A = JT J . The solution would be found quite easily, should r(k+1) be known.
Unfortunately, this is not true. It was the reason why Levenberg substituted the second term in
equation (??), −J (k)T

r(k+1), by λ∆c(k). The scalar λ serves for scaling purposes. For λ = 0,
the method transforms into fast Newton method, which may diverge, while for λ → ∞, the
method approaches the stable steepest descent method.

Later, Marquardt changed λ into λ(k), so that the equation for ∆c(k) became

(A(k) + λ(k) I)∆c(k) = −v(k) . (6)

Values of λ(k+1) are varying in dependence on behavior of iteration process. For slow stable
convergence of iterations, the new value λ(k+1) = λ(k)/ν is set, which accelerates the process.
Should a sign of divergence be observed, the value is changed into λ(k+1) = λ(k) ν. The usual
value of ν is between 2 and 10.

prof. Ing. Miroslav Balda, DrSc.
Veleslav́ınova 11, 301 00 Plzeň, phone: +420 377 236 415, e-mail: balda@cdm.it.cas.cz

Fletcher improved Marquardt strategy of λ adaptation significantly. He substituted the
unity matrix I by a diagonal matrix D of scales in the formula (??). More to it, he introduced
new quotient R which expresses how forecasted sum of squares agrees with the real one in the
current iteration step. If R falls between preset limits (Rlo, Rhi), parameters of iteration do
not change, otherwise changes of λ and ν follow. Value of λ is halved if R > Rhi. Provided λ
becomes lower than a critical value λc, it is cleared which causes the next iteration proceeds like
in the Newton method. If R < Rlo, parameter ν is set so that it holds 2 ≤ ν ≤ 10, and if λ were
zero, a modification of λc and λ follows.

2 Function LMFsolve

Fletcher built his algorithm in FORTRAN and presented it in the report [?] more then 35
years ago. It was rewritten verbatim in the Central Research Institute ŠKODA and then used
for many least square issues in dynamics, processing of experimental data, identification, etc.
A code of the function has been later recasted into MATLAB with slight modifications at the end
of eighties of the past century. The complete reconstruction of the function named LMFsolve
appeared in the recent time (see [?]).

function [xf, S, cnt] = LMFsolve(varargin)
% Solve a Set of Overdetermined Nonlinear Equations in Least-Squares Sense.
%%%
% A solution is obtained by a Fletcher version of the Levenberg-Maquardt
% algoritm for minimization of a sum of squares of equation residuals.
%
% [Xf, Ssq, CNT] = LMFsolve(FUN,Xo,Options)
% FUN is a function handle or a function M-file name that evaluates
% m-vector of equation residuals,
% Xo is n-vector of initial guesses of solution,
% Options is an optional set of Name/Value pairs of control parameters
% of the algorithm. It may be also preset by calling:
% Options = LMFsolve(’default’), or by a set of Name/Value pairs:
% Options = LMFsolve(’Name’,Value, ...), or updating the Options
% set by calling
% Options = LMFsolve(Options,’Name’,Value, ...).
%
% Name Values {default} Description
% ’Display’ integer Display iteration information
% {0} no display
% k display initial and every k-th iteration;
% ’Jacobian’ handle Jacobian matrix function handle; {@finjac}
% ’FunTol’ {1e-4} norm(FUN(x),1) stopping tolerance;
% ’XTol’ {1e-7} norm(x-xold,1) stopping tolerance;
% ’MaxIter’ {100} Maximum number of iterations;
% ’ScaleD’ Scale control:
% value D = eye(m)*value;
% vector D = diag(vector);
% {[]} D(k,k) = JJ(k,k) for JJ(k,k)>0, or
% = 1 otherwise,
% where JJ = J.’*J
% Not defined fields of the Options structure are filled by default values.
%
% Output Arguments:
% Xf final solution approximation
% Ssq sum of squares of residuals
% Cnt >0 count of iterations
% -MaxIter, did not converge in MaxIter iterations

% Example:
% The general Rosenbrock’s function has the form
% f(x) = 100(x(1)-x(2)^2)^2 + (1-x(1))^2
% Optimum solution gives f(x)=0 for x(1)=x(2)=1. Function f(x) can be
% expressed in the form
% f(x) = f1(x)^2 =f2(x)^2,
% where f1(x) = 10(x(1)-x(2)^2) and f2(x) = 1-x(1).
% Values of the functions f1(x) and f2(x) can be used as residuals.
% LMFsolve finds the solution of this problem in 5 iterations. The more
% complicated problem sounds:
% Find the least squares solution of the Rosenbrock valey inside a circle

% of the unit diameter centered at the origin. It is necessary to build
% third function, which is zero inside the circle and increasing outside it.
% This property has, say, the next function:
% f3(x) = sqrt(x(1)^2 + x(2)^2) - r, where r is a radius of the circle.
% Its implementation using anonymous functions has the form
% R = @(x) sqrt(x’*x)-.5; % A distance from the radius r=0.5
% ros= @(x) [10*(x(2)-x(1)^2); 1-x(1); (R(x)>0)*R(x)*1000];
% [x,ssq,cnt]=LMFsolve(ros,[-1.2,1],’Display’,1,’MaxIter’,50)
% Solution: x = [0.4556; 0.2059], |x| = 0.5000
% sum of squares: ssq = 0.2966,
% number of iterations: cnt = 18.
% Note:
% Users with older MATLAB versions, which have no anonymous functions
% implemented, have to call LMFsolve with named function for residuals.
% For above example it is
%
% [x,ssq,cnt]=LMFsolve(’rosen’,[-1.2,1]);
%
% where the function rosen.m is of the form
%
% function r = rosen(x)
%% Rosenbrock valey with a constraint
% R = sqrt(x(1)^2+x(2)^2)-.5;
%% Residuals:
% r = [10*(x(2)-x(1)^2) % first part
% 1-x(1) % second part
% (R>0)*R*1000. % penalty
%];

% Reference:
% Fletcher, R., (1971): A Modified Marquardt Subroutine for Nonlinear Least
% Squares. Rpt. AERE-R 6799, Harwell

% M. Balda,
% Institute of Thermomechanics,
% Academy of Sciences of The Czech Republic,
% balda AT cdm DOT cas DOT cz
% 2007-07-02
% 2007-10-08 formal changes, improved description
%%%

% OPTIONS
%%%%%%%

% Default Options
if nargin==1 && strcmpi(’default’,varargin(1))

xf.Display = 0; % no print of iterations
xf.Jacobian = @finjac; % finite difference Jacobian approximation
xf.MaxIter = 100; % maximum number of iterations allowed
xf.ScaleD = []; % automatic scaling by D = diag(diag(J’*J))
xf.FunTol = 1e-7; % tolerace for final function value
xf.XTol = 1e-4; % tolerance on difference of x-solutions
return

% Updating Options
elseif isstruct(varargin{1}) % Options=LMFsolve(Options,’Name’,’Value’,...)

if ~isfield(varargin{1},’Jacobian’)
error(’Options Structure not Correct for LMFsolve.’)

end
xf=varargin{1}; % Options
for i=2:2:nargin-1

name=varargin{i}; % option to be updated
if ~ischar(name)

error(’Parameter Names Must be Strings.’)
end
name=lower(name(isletter(name)));
value=varargin{i+1}; % value of the option
if strncmp(name,’d’,1), xf.Display = value;
elseif strncmp(name,’f’,1), xf.FunTol = value(1);
elseif strncmp(name,’x’,1), xf.XTol = value(1);
elseif strncmp(name,’j’,1), xf.Jacobian = value;
elseif strncmp(name,’m’,1), xf.MaxIter = value(1);
elseif strncmp(name,’s’,1), xf.ScaleD = value;
else disp([’Unknown Parameter Name --> ’ name])
end

end
return

% Pairs of Options
elseif ischar(varargin{1}) % check for Options=LMFSOLVE(’Name’,Value,...)

Pnames=char(’display’,’funtol’,’xtol’,’jacobian’,’maxiter’,’scaled’);
if strncmpi(varargin{1},Pnames,length(varargin{1}))

xf=LMFsolve(’default’); % get default values
xf=LMFsolve(xf,varargin{:});
return

end
end

% LMFSOLVE(FUN,Xo,Options)
%%%%%%%%%%%%%%%%%%%%%%%%

FUN=varargin{1}; % function handle
if ~(isvarname(FUN) || isa(FUN,’function_handle’))

error(’FUN Must be a Function Handle or M-file Name.’)
end

xc=varargin{2}; % Xo

if nargin>2 % OPTIONS
if isstruct(varargin{3})

options=varargin{3};
else

if ~exist(’options’,’var’)
options = LMFsolve(’default’);

end
for i=3:2:size(varargin,2)-1

options=LMFsolve(options, varargin{i},varargin{i+1});
end

end
else

if ~exist(’options’,’var’)
options = LMFsolve(’default’);

end
end

x=xc(:);
lx=length(x);

r=feval(FUN,x); % Residuals at starting point
%~~~~~~~~~~~~~~
S=r’*r;
epsx=options.XTol(:);
epsf=options.FunTol(:);
if length(epsx)<lx, epsx=epsx*ones(lx,1); end
J=options.Jacobian(FUN,r,x,epsx);
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A=J.’*J; % System matrix
v=J.’*r;

D = options.ScaleD;
if isempty(D)

D=diag(diag(A)); % automatic scaling
for i=1:lx

if D(i,i)==0, D(i,i)=1; end
end

else
if numel(D)>1

D=diag(sqrt(abs(D(1:lx)))); % vector of individual scaling
else

D=sqrt(abs(D))*eye(lx); % scalar of unique scaling
end

end

Rlo=0.25; Rhi=0.75;
l=1; lc=.75; is=0;
cnt=0;
ipr=options.Display;
printit(-1); % Table header
d=options.XTol; % vector for the first cycle
maxit = options.MaxIter; % maximum permitted number of iterations

while cnt<maxit && ... % MAIN ITERATION CYCLE
any(abs(d)>=epsx) && ... %%%%%%%%%%%%%%%%%%%%

any(abs(r)>=epsf)
d=(A+l*D)\v; % negative solution increment
xd=x-d;
rd=feval(FUN,xd);

% ~~~~~~~~~~~~~~~~~
Sd=rd.’*rd;
dS=d.’*(2*v-A*d); % predicted reduction
R=(S-Sd)/dS;

if R>Rhi
l=l/2;
if l<lc, l=0; end

elseif R<Rlo
nu=(Sd-S)/(d.’*v)+2;
if nu<2

nu=2;
elseif nu>10

nu=10;
end
if l==0

lc=1/max(abs(diag(inv(A))));
l=lc;
nu=nu/2;

end
l=nu*l;

end
cnt=cnt+1;
if ipr>0 && (rem(cnt,ipr)==0 || cnt==1)

printit(cnt,[S,l,R,x(:).’])
printit(0,[lc,d(:).’])

end
if Sd>S && is==0

is=1;
St=S; xt=x; rt=r; Jt=J; At=A; vt=v;

end
if Sd<S || is>0

S=Sd; x=xd; r=rd;
J=options.Jacobian(FUN,r,x,epsx);

% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A=J.’*J; v=J.’*r;

else
S=St; x=xt; r=rt; J=Jt; A=At; v=vt;

end
if Sd<S, is=0; end

end
xf = x; % finat solution
if cnt==maxit, cnt=-cnt; end % maxit reached
%%%

% PRINTIT Printing of intermediate results
% %%%%%%%
function printit(cnt,mx)
% ~~~~~~~~~~~~~~~
% cnt = -1 print out the header
% 0 print out second row of results
% >0 print out first row of results

if ipr>0
if cnt<0 % table header

disp(’’)
disp(char(’*’*ones(1,100)))
disp([’ cnt SUM(r^2) l R’ blanks(21) ’x(i) ...’])
disp([blanks(24) ’lc’ blanks(32) ’dx(i) ...’])
disp(char(’*’*ones(1,100)))
disp(’’)

else % iteration output
if cnt>0 || rem(cnt,ipr)==0

f=’%12.4e ’;
form=[f f f f ’\n’ blanks(49)];
if cnt>0

fprintf([’%4.0f ’ f f f ’ x = ’],[cnt,mx(1:3)])
fprintf(form,mx(4:length(mx)))

else
fprintf([blanks(18) f blanks(13) ’dx = ’], mx(1))
fprintf(form,mx(2:length(mx)))

end

fprintf(’\n’)
end

end
end
end

% FINJAC numerical approximation to Jacobi matrix
% %%%%%%
function J = finjac(FUN,r,x,epsx)
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
lx=length(x);
J=zeros(length(r),lx);
for k=1:lx

dx=.25*epsx(k);
xd=x;
xd(k)=xd(k)+dx;
rd=feval(FUN,xd);

% ~~~~~~~~~~~~~~~~
J(:,k)=((rd-r)/dx);

end
end
end

The main part of the function pursues three tasks. At first, it initiates optional parameters
to default or user defined values. At second, initial conditions for the iteration process are
determined as sum of squares of residuals corresponding to an initial guess of solution, and
Jacobian matrix at that point. The last is an iteration loop executing the Levenberg-Marquardt
algorithm in Fletcher’s modification.

There are two subfunctions included in LMFsolve.m, i.e. Printit and finjac. The subfunc-
tion Printit displays intermediate results in each iprth iteration. A non-negative value of ipr
is set by a user as one of options. The output contains values of an iteration order k, sum of
squares of residuals, λ and λc, quotient R, solution c(k) in selected iterations, and increments
∆c(k).

A user has a possibility to control performance of the function by means of parameters,
values of which may be set either as default or by calling LMFsolve. Default values of the
parameters are set automatically if LMFsolve is called in the simplest form

[x,ssq,cnt] = LMFsolve(FUN,x0)

The names and default values of the parameters are as follows:

’Display’ 0 do not display any intermediate results
’Jacobian’ @finjac use subfunction finjac for evaluation of J
’MaxIter’ 100 maximum permitted number of iterations
’Xtol’ 1e-4 tolerance for increments in each unknown
’Ftol’ 1e-7 tolerance for sum of squares
’ScaleD’ [] user’s control of diagonal matrix of scales D

3 Examples

The classical example for testing optimization algorithms is the Rosenbrock’s function sometimes
called ”banana valley”:

f(x) = 100 (x2 − x2
1)

2 + (1− x1)2 (7)

It is obvious that the function f(x) is a sum of squares of two terms, 10 (x2 − x2
1) and 1 − x1.

In consequence of it, any function for minimization of a sum of squares can be used for getting
a solution. The function LMFsolve has been tested on three cases of the Rosenbrock’s function,
the standard one under eqn (??), the same constrained by a circle of a unit diameter at the
origin, and the similar case with the radius equal

√
1.5. The later problem is also solved in the

Optimization Toolbox for demonstrating quadratic programming.

1. Rosenbrock’s function.
The original function is transformed into the least squares problem with residuals

f1(x) = 10 (x2 − x2
1) (8)

f2(x) = 1− x1 (9)

The solution is x = [1; 1].

2. Rosenbrock’s function with circular constraint of radius r = 0.5
For solutions of constraint problems, a user should define the unfeasible domain in the
form of an additional residuum. In this case, the residuum has the general form

f3(x) = w2

√
x2

1 + x2
2 − r = d1 or (10)

f3(x) = w3 (x2
1 + x2

2 − r2) = d2 outside the circular domain (11)
f3(x) = 0 inside (12)

The residuum d2 has been chosen in the form corresponding the Optimization Toolbox.
The solution is x = [0.4557; 0.2059].

3. Rosenbrock’s function with circular constraint of radius r =
√

1.5
Formulae for f3(x) remain the same as in Case 2.

The solution is x = [0.9073; 0.8228].

Parameters and numbers of iterations of testing runs are gathered in the table ??. Symbols ∞
denote that the iteration process has not converge.

ScaleD 0 1 []
D O I diag(diag(A))

Case radius r weight w f3(x)

1 - - - 2 10 5
2 0.5 100 d1 13 ∞ 80
2 0.5 100 d2 ∞ ∞ 13
3

√
1.5 10 d1 10 ∞ 27

3
√

1.5 10 d2 ∞ 25 57

Table 1: A survey of 5 testing examples

The trace of the iteration process starting in the common point [-1.2; 1] is shown for the
case 2 with the penalty d1 and ScaleD=0 in the figure ??. The inner part of the circle is the
feasible area.

4 Conclusions

The presented function LMFsolve is a transcription of the Fletcher’s FORTRAN version of
Levenberg-Marquardt algorithm for approximate solution of an overdetermined system of non-
linear algebraic equations in the least squares sense in MATLAB. The algorithm has been a bit
simplified, what brings problems in extreme situations. They have been documented in solution
of constrained Rosenbrock’s function, where instabilities occur rather often.

Two kinds of penalties as additional equations have been used. In both cases, these
functions have zero values inside a circle, a feasible domain, and are raising with a distance
from its border. While the penalty d1 is growing linearly, d2 raised quadratically. the method
is rather sensitive on the values of the function weight w.

Constrained Rosenbrock valley

x
1

x 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 1: The trace of the iteration process

The function behaves rather good for standard least squares problems occurring in multi-
variable curve-fitting. This is a frequent task in experimental data processing. One of those issues
has been a regression of large sets of fatigue lives of parts caused by multiaxial dynamic load-
ing. The nonlinear regression function possessed six unknown parameters, which were obtained
in 18 iterations. Nevertheless, the function LMFsolve needs modifications which will improve
its reliability. Updated versions of LMFsolve will appear in the MathWorks File Exchange at [?].

Acknowledgments.

The work has been supported by the grant project 101/05/0199 of the Czech Science Foundation
and the project AVOZ 20760514 of the Academy of Sciences of the Czech Republic.

Reference

[1] R. Fletcher (1971): A Modified Marquardt Subroutine for Nonlinear Least Squares. Rpt.
AERE-R 6799, Harwell

[2] M. Balda (2007): LMFsolve.m: Levenberg-Marquardt-Fletcher algorithm for nonlinear least
squares problems. MathWorks, File Exchange, ID 16063
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=16063

